Testy2022/23Užitečné sumarizační vzorceUžitečné sumarizační vzorce∑i=lu=u−l+1\displaystyle\sum_{i=l}^u = u - l + 1i=l∑u=u−l+1 ∑i=1n1=n\displaystyle\sum_{i=1}^n 1 = ni=1∑n1=n ∑i=1ni=1+2+...+n=12n(n+1)\displaystyle\sum_{i=1}^n i = 1 + 2 + ... + n = \dfrac{1}{2}n(n+1)i=1∑ni=1+2+...+n=21n(n+1) ∑i=1ni2=12+22+...+n2=16n(n+1)(2n+1)≈13n3\displaystyle\sum_{i=1}^n i^2 = 1^2 + 2^2 + ... + n^2 = \dfrac{1}{6}n(n+1)(2n+1)\approx\dfrac{1}{3}n^3i=1∑ni2=12+22+...+n2=61n(n+1)(2n+1)≈31n3 ∑i=0nai=1+a+a2+...+an=an+1−1a−1\displaystyle\sum_{i=0}^n a^i= 1 + a + a^2 + ... + a^n = \dfrac{a^{n+1}-1}{a-1}i=0∑nai=1+a+a2+...+an=a−1an+1−1, pro a≠1a \not= 1a=1 ∑i=0n2i=20+21+...2n=2n+1−1\displaystyle\sum_{i=0}^n 2^i = 2^0 + 2^1 + ... 2^n = 2^{n+1}-1i=0∑n2i=20+21+...2n=2n+1−1